一、柴油機基本知識
柴油發(fā)動機與汽油發(fā)動機具有基本相同的結構,都有氣缸體、氣缸蓋、活塞、氣門、曲柄、曲軸、凸輪軸、飛輪等。但前者用壓燃柴油作功,后者用點燃汽油作功,一個壓燃一個點燃,就是兩者的根本區(qū)別點。汽油機的燃料是在進氣行程中與空氣混合后進入氣缸,然后被火花塞點燃作功;柴油機的燃料則是在壓縮行程接近終了時直接噴注入氣缸,在壓縮空氣中被壓燃作功。這個區(qū)別造成了柴油機在燃料供給系統(tǒng)的結構有其自己的特點。
柴油機的燃料噴射系統(tǒng)是由噴油泵、噴油器、高壓油管及一些附屬輔助件組成。柴油機燃料輸送的簡單過程是:輸油泵將柴油送到濾清器,過濾后進入噴油泵(為了保證充足的燃料并保持一定的壓力,要求輸油泵的供油量比噴油泵的需要量要大得多,多余的柴油就經低壓管回到油箱,其它部分柴油被噴油泵壓縮至高壓)經過高壓油管進入噴油器直接噴入氣缸燃燒室中壓燃。(示意圖是柴油機燃料供給系統(tǒng),4是高壓輸油管、1、2、3是低壓輸油管、5、6、7、8是回油管)。
二、高壓共軌電控柴油噴射系統(tǒng)
現(xiàn)代先進的柴油機一般采用電控噴射、共軌、渦輪增壓中冷等技術,在重量、噪音、煙度等方面已取得重大突破,達到了汽油機的水平,而且相比汽油機更環(huán)保。目前國外輕型汽車以及先進的農用拖拉機都有采用柴油發(fā)動機的車型。
在電控噴射方面柴油機與汽油機的主要差別是,汽油機的電控噴射系統(tǒng)只是控制空燃比,柴油機的電控噴射系統(tǒng)則是通過控制噴油時間來調節(jié)輸出的大小,而柴油機噴油控制是由發(fā)動機的轉速和加速踏板位置(油門拉桿位置)來決定的。因此,基本工作原理是計算機根據(jù)轉速傳感器和油門位置傳感器的輸入信號,首先計算出基本噴油量,然后根據(jù)水溫、進氣溫度、進氣壓力等傳感器的信號進行修正,再與來自控制套位置傳感器的信號進行反饋修正,確定最佳噴油量的。
電控柴油噴射系統(tǒng)由傳感器、ECU(計算機)和執(zhí)行機構三部分組成。其任務是對噴油系統(tǒng)進行電子控制,實現(xiàn)對噴油量以及噴油定時隨運行工況的實時控制。采用轉速、溫度、壓力等傳感器,將實時檢測的參數(shù)同步輸入計算機,與巳儲存的參數(shù)值進行比較,經過處理計算按照最佳值對噴油泵、廢氣再循環(huán)閥、預熱塞等執(zhí)行機構進行控制,驅動噴油系統(tǒng),使柴油機運作狀態(tài)達到最佳。這類電控系統(tǒng)可分為:蓄壓式電控燃油噴射系統(tǒng)、液力增壓式電控燃油噴射系統(tǒng)和高壓共軌式電控燃油噴射系統(tǒng)。以下就介紹一下高壓共軌電控柴油噴射系統(tǒng):
(一)共軌技術
在柴油機中,高速運轉使柴油噴射過程的時間只有千分之幾秒,實驗證明,在噴射過程中高壓油管各處的壓力是隨時間和位置的不同而變化的。由于柴油的可壓縮性和高壓油管中柴油的壓力波動,使實際的噴油狀態(tài)與噴油泵所規(guī)定的柱塞供油規(guī)律有較大的差異。油管內的壓力波動有時還會在主噴射之后,使高壓油管內的壓力再次上升,達到令噴油器的針閥開啟的壓力,將已經關閉的針閥又重新打開產生二次噴油現(xiàn)象,由于二次噴油不可能完全燃燒,于是增加了煙度和碳氫化合物(HC)的排放量,油耗增加。此外,每次噴射循環(huán)后高壓油管內的殘壓都會發(fā)生變化,隨之引起不穩(wěn)定的噴射,尤其在低轉速區(qū)域容易產生上述現(xiàn)象,嚴重時不僅噴油不均勻,而且會發(fā)生間歇性不噴射現(xiàn)象。為了解決柴油機這個燃油壓力變化的缺陷,現(xiàn)代柴油機采用了一種稱為共軌的技術。
共軌技術是指高壓油泵、壓力傳感器和ECU組成的閉環(huán)系統(tǒng)中,將噴射壓力的產生和噴射過程彼此完全分開的一種供油方式,由高壓油泵把高壓燃油輸送到公共供油管,通過對公共供油管內的油壓實現(xiàn)精確控制,使高壓油管壓力大小與發(fā)動機的轉速無關,可以大幅度減小柴油機供油壓力隨發(fā)動機轉速的變化,因此也就減少了傳統(tǒng)柴油機的缺陷。ECU控制噴油器的噴油量,噴油量大小取決于燃油軌(公共供油管)壓力和電磁閥開啟時間的長短。
共軌式噴油系統(tǒng)于二十世紀 90 年代中后期才正式進入實用化階段。高壓共軌系統(tǒng)可實現(xiàn)在傳統(tǒng)噴油系統(tǒng)中無法實現(xiàn)的功能,其優(yōu)點有:
a、共軌系統(tǒng)中的噴油壓力柔性可調,對不同工況可確定所需的最佳噴射壓力,從而優(yōu)化柴油機綜合性能。
b、可獨立地柔性控制噴油正時,配合高的噴射壓力( 120Mpa~200MPa ),可同時控制 NOx 和微粒( PM )在較小的數(shù)值內,以滿足排放要求。
c、柔性控制噴油速率變化,實現(xiàn)理想噴油規(guī)律,容易實現(xiàn)預噴射和多次噴射,既可降低柴油機 NOx ,又能保證優(yōu)良的動力性和經濟性。
d、由電磁閥控制噴油,其控制精度較高,高壓油路中不會出現(xiàn)氣泡和殘壓為零的現(xiàn)象,因此在柴油機運轉范圍內,循環(huán)噴油量變動小,各缸供油不均勻可得到改善,從而減輕柴油機的振動和降低排放。
由于高壓共軌系統(tǒng)具有以上的優(yōu)點,現(xiàn)在國內外柴油機的研究機構均投入了很大的精力對其進行研究。比較成熟的系統(tǒng)有:德國 ROBERT BOSCH 公司的 CR 系統(tǒng)、日本電裝公司的 ECD-U2 系統(tǒng)、意大利的 FIAT 集團的 unijet 系統(tǒng)、英國的 DELPHI DIESEL SYSTEMS 公司的 LDCR 系統(tǒng)、迪爾公司的高壓共軌系統(tǒng)等。
(二)高壓共軌電控燃油噴射系統(tǒng)及基本單元
圖 1 為高壓共軌電控燃油噴射系統(tǒng)的基本組成圖。它主要由電控單元、高壓油泵、蓄壓器(共軌管)、電控噴油器以及各種傳感器等組成。低壓燃油泵將燃油輸入高壓油泵,高壓油泵將燃油加壓送入高壓油軌(蓄壓器),高壓油軌中的壓力由電控單元根據(jù)油軌壓力傳感器測量的油軌壓力以及需要進行調節(jié),高壓油軌內的燃油經過高壓油管,根據(jù)機器的運行狀態(tài),由電控單元從預設的 map 圖中確定合適的噴油定時、噴油持續(xù)期由電液控制的電子噴油器將燃油噴入氣缸。
1、高壓油泵
高壓油泵的供油量的設計準則是必須保證在任何情況下的柴油機的噴油量與控制油量之和的需求以及起動和加速時的油量變化的需求。由于共軌系統(tǒng)中噴油壓力的產生于燃油噴射過程無關,且噴油正時也不由高壓油泵的凸輪來保證,因此高壓油泵的壓油凸輪可以按照峰值扭矩最低、接觸應力最小和最耐磨的設計原則來設計凸輪。
大部分公司采用由柴油機驅動的三缸徑向柱塞泵來產生高達 135Mpa 的壓力。該高壓油泵在每個壓油單元中采用了多個壓油凸輪,使其峰值扭矩降低為傳統(tǒng)高壓油泵的 1/9 ,負荷也比較均勻,降低了運行噪聲。該系統(tǒng)中高壓共軌腔中的壓力的控制是通過對共軌腔中燃油的放泄來實現(xiàn)的,為了減小功率損耗,在噴油量較小的情況下,將關閉三缸徑向柱塞泵中的一個壓油單元使供油量減少。
2、高壓油軌(共軌管)
共軌管將供油泵提供的高壓燃油分配到各噴油器中,起蓄壓器的作用, ECD-U2 系統(tǒng)的共軌管如圖 4 所示。它的容積應削減高壓油泵的供油壓力波動和每個噴油器由噴油過程引起的壓力震蕩,使高壓油軌中的壓力波動控制在 5Mpa 之下。但其容積又不能太大,以保證共軌有足夠的壓力響應速度以快速跟蹤柴油機工況的變化。 ECD-U2 系統(tǒng)的高壓泵的最大循環(huán)供油量為 600毫升,共軌管容積為 94000毫升。
高壓共軌管上還安裝了壓力傳感器、液流緩沖器(限流器)和壓力限制器。壓力傳感器向 ECU 提供高壓油軌的壓力信號;液流緩沖器(限流器)保證在噴油器出現(xiàn)燃油漏泄故障時切斷向噴油器的供油,并可減小共軌和高壓油管中的壓力波動;壓力限制器保證高壓油軌在出現(xiàn)壓力異常時,迅速將高壓油軌中的壓力進行放泄。
從上述分析可見,精確設計高壓共軌管的容積和形狀適合確定的柴油機是非常關鍵的。
3、電控噴油器
電控噴油器是共軌式燃油系統(tǒng)中最關鍵和最復雜的部件,它的作用根據(jù) ECU 發(fā)出的控制信號,通過控制電磁閥的開啟和關閉,將高壓油軌中的燃油以最佳的噴油定時、噴油量和噴油率噴入柴油機的燃燒室。
為了實現(xiàn)預定的噴油形狀,需對噴油器進行合理的優(yōu)化設計??刂剖业娜莘e的大小決定了針閥開啟時的靈敏度,控制室的容積太大,針閥在噴油結束時不能實現(xiàn)快速的斷油,使后期的燃油霧化不良;控制室容積太小,不能給針閥提供足夠的有效行程,使噴射過程的流動阻力加大,因此對控制室的容積也應根據(jù)機型的最大噴油量合理選擇。
控制量孔 A 、 Z 的大小對噴油嘴的開啟和關閉速度及噴油過程起著決定性的影響。雙量孔閥體的三個關鍵性結構是進油量孔、回油量孔和控制室,它們的結構尺寸對噴油器的噴油性能影響巨大?;赜土靠着c進油量孔的流量率之差及控制室的容積決定了噴油嘴針閥的開啟速度,而噴油嘴針閥的關閉速度由進油量孔的流量率和控制室的容積決定。進油量孔的設計應使噴油嘴針閥有足夠的關閉速度,以減少噴油嘴噴射后期霧化不良的部分。
此外噴油嘴的最小噴油壓力取決于回油量孔和進油量孔的流量率及控制活塞的端面面積。這樣在確定了進油量孔、回油量孔和控制室的結構尺寸后,就確定了噴油嘴針閥完全開啟的穩(wěn)定、最短噴油過程,同時就確定了噴油嘴的穩(wěn)定最小噴油量??刂剖胰莘e的減少可以使針閥的響應速度更快,使燃油溫度對噴嘴噴油量的影響更小。
但控制室的容積不可能無限制減少,它應能保證噴油嘴針閥的升程以使針閥完全開啟。兩個控制量孔決定了控制室中的動態(tài)壓力,從而決定了針閥的運動規(guī)律,通過仔細調節(jié)這兩個量孔的流量系數(shù),可以產生理想的噴油規(guī)律。
由于高壓共軌噴射系統(tǒng)的噴射壓力非常高,因此其噴油嘴的噴孔截面積很小,如 BOSCH 公司的噴油嘴的噴孔直徑為 0.169mm × 6 ,在如此小的噴孔直徑和如此高的噴射壓力下,燃油流動處于極端不穩(wěn)定狀態(tài),油束的噴霧錐角變大,燃油霧化更好,但貫穿距離變小,因此應改變原柴油機進氣的渦流強度、燃燒室結構形狀以確保最佳的燃燒過程。
對于噴油器電磁閥,由于共軌系統(tǒng)要求它有足夠的開啟速度,考慮到預噴射是改善柴油機性能的重要噴射方式,控制電磁閥的響應時間更應縮短。
4、高壓油管
高壓油管是連接共軌管和電控噴油器的通道,它應有足夠的燃油流量減小燃油流動時的壓降,并使高壓管路系統(tǒng)中的壓力波動較小,能承受高壓燃油的沖擊作用,且起動時共軌中的壓力能很快建立。各缸高壓油管的長度應盡量相等,使柴油機每一個噴油器有相同的噴油壓力,從而減少發(fā)動機各缸之間噴油量的偏差。各高壓油管應盡可能短,使從共軌到噴油嘴的壓力損失最小。 BOSCH 公司的高壓油管的外經為 6mm ,內徑為 2.4mm ,日本電裝公司的高壓油管的外經為 8mm ,內徑為 3mm 。